

PID Controller

total CUSTOMER SATSFACTION
 ISO 9001
 ((A) (i)

1241 Bundy Boulevard., Winona, Minnesota USA 55987
Phone: +1 (507) 454-5300, Fax: +1 (507) 452-4507 http://www.watlow.com

Warranty

The EZ-ZONE ${ }^{\circledR}$ PM is manufactured by ISO 9001 -registered processes and is backed by a three-year warranty to the first purchaser for use, providing that the units have not been misapplied. Since Watlow has no control over their use and sometimes misuse, we cannot guarantee against failure. Watlow's obligations hereunder at Watlow's option, are limited to replacement, repair or refund of purchase price, and parts which upon examination prove to be defective within the warranty period specified. This warranty does not apply to damage resulting from transportation, alteration, misuse or abuse. The purchaser must use Watlow parts to maintain all listed ratings.

Technical Assistance

f you encounter a problem with your Watlow controller, review your configuration information to verify that your selections are consistent with our application: inputs, outputs, alarms, limits, tc. If the problem persists, you can get technical assistance from your local Watlow representative see back cover), by e-mailing your questions to wintechsupport@watlow.com or by dialing +1 (507) 494-5656 between 7 a.m. and 5 p.m., Central Standard Time (CST). Ask for an Applications Engineer. Please have the following information available when calling:

- Complete model number

All configuration information

- User's Manual

Factory Page
Return Material Authorization (RMA)

1. Call Watlow Customer Service, (507) 454-

5300 , for a Return Material Authorization
(RMA) number before returning any item for
repair. If you do not know why the product
failed, contact an Application Engineer or
Product Manager.
The EZ-ZONE PM Controller User's Manual is copyrighted by Watlow Winona, Inc., © April 2010 with all rights reserved. The EZ-ZONE PM is covered by U.S. Patent No. 6,005,577 and Patents Pending

Overview

The EZ-ZONE PM Express controllers take the pain out of solving your thermal loop requirements while reducing the cost of control-loop ownership You can order this control as a single loop PID controller with a high-amperage power output in either a $16^{\text {th }}$ or $32^{\text {nd }}$ DIN panel-mount package. It just got a whole lot easier to solve the thermal requirements of your system. Because the EZ-ZONE family of controls are highly scalable
where you pay only for what you need. So if you are looking for a single or multi-loop PID control ler, an over-under limit controller or an integrated controller (PID and Limit), the EZ-ZONE family of controls can meet all of your needs. Point your browser to http://www.watlow.com to find out more about the EZ-ZONE family of controls. For this particular control, serial communications is accomplished using Watlow's Standard Bus protocol. If the need arises to network your controls and communicate using other popular proto cols such as Modbus RTU/TCP ${ }^{\circledR}$, EtherNet/IPTM, DeviceNet ${ }^{T M}$ or Profibus DP consider using the EZ-ZONE family Remote User Interface/Gateway (RUI/GTW).

Safety Information
We use note, caution and warning symbols throughout this book to draw your attention to important operaional and safety information.
A "NOTE" marks a short message to alert you to an important detail.
A "CAUTION" safety alert appears with information that is important for protecting your equipment and performance. Be especially careful to read and follow Al "WARNING" apply to your application.
tion that is important fort appears with informaequipment from damage. Pay very close attention to all warnings that apply to your application.
The electrical hazard symbol, 合 (a lightning bolt in a triangle) precedes an electric shock hazard CAUTION or WARNING safety statement. Further explanations follow:

Symbol	Explanation
	CAUTION - Warning or Hazard that needs further explanation than label on unit can provide. Consult users manual for further information.
	ESD Sensitive product, use proper grounding and handling techniques when installing or servicing product.
	Unit protected by double/reinforced insulation for shock hazard prevention.
	Do not throw in trash, use proper recycling techniques or consult manufacturer for proper disposal.
	Unit can be powered with either alternating current (ac) voltage or direct current (dc) voltage.

	Unit is a Listed device per Underwriters Laboratories®. It has been evaluated to United States and Canadian requirements for Process Control Equipment. UL 61010 and CSA C22.2 No. 61010. File E185611 QUYX, QUYX7. See: www. ul.com
	Unit is a Listed device per Underwriters Laboratories $®$. It has been evaluated to United States and Canadian requirements for Hazardous Locations Class 1 Division II Groups A, B, C and D. ANSI/ ISA 12.12.01-2007. File E184390 QUZW, QUZW7. See: www. ul.com
$C E$	Unit is compliant with European Union directives. See Declaration of Conformity for further details on Directives and Standards used for Compliance.
$\underset{\text { APPROVED }}{\text { FM }}$	Unit has been reviewed and approved by Factory Mutual as a Temperature Limit Device per FM Class 3545 standard. See: www.fmglobal. com
	Unit has been reviewed and approved by CSA International for use as Temperature Indicating-Regulating Equipment per CSA C22.2 No. 24. See: www.csainternational.org

Installation and Wiring

Dimensions 1/32 DIN

Installation

1. Make the panel cutout using the mounting template dimensions in this chapter. Insert the case assembly into the panel cutout.
2. While pressing the case assembly firmly against the panel, slide the mounting collar over the back of the controller.
If the installation does not require a NEMA 4 X seal, slide the mounting collar up to the back of the panel tight enough to eliminate the spacing between the gasket and the panel.

seal, place the blade of a screwdriver in the notch of the mounting collar assembly and push toward the panel while applying pressure to the face of the controller. Don't be afraid to apply enough pressure to properly install the controller.
The seal system is compressed more by mating the mounting collar tighter to the front panel (see picture). If you can move the case assembly back and forth in the cutout you do not have a proper seal. The tabs on each side of the mouting collar hane the ridges on the sides of the controlle. Ean the ridges on the sides of the controller. Each tooth is staggered at a different depth from the front so that only one of the tabs, on each side, is locked onto the ridges at a time.

Removing the Mounted Controller from Its Case 1. From the controller's face, pull out the tab on each side until you hear it click.

2. Once the sides are released, grab the unit above and below the face with two hands and pull the unit out. If it is difficult to pull the unit pull the unit out. If it is difficult to pull the unit
out, remove the connectors from the back of the controller. This should make it easier to remove.

㐱 Warning:

All electrical power to the controller and controlled circuits must be disconnected before removing the controller from the front panel or disconnecting other wiring. Failure to follow these instructions may cause an electrical shock and/or sparks that could cause an explosion in class 1, div. 2 hazardous locations.

Returning the Controller to its Cas

1. Ensure that the orientation of the controller is correct and slide it back into the housing.
2. Using your thumbs push on either side of the controller until both latches click.
Note:
The controller is keyed so if it feels that it will not slide back in do not force it Check the orientation again and reinsert after correcting.

Chemical Compatibility

This product is compatible with acids, weak alkalis, alcohols, gamma radiation and ultraviolet radiation.
This product is not compatible with strong alkalis, organic solvents, fuels, aromatic hydrocarbons, chlorinated hydrocarbons, esters and keytones.

Terminal Definitions

Note:
In the pictures below notice that the Slot A connector does not show labeling for the outputs. Labeling for Slot A outputs is based on the controller part number.

© Warning:

Use National Electric (NEC) or other countryspecific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

Note:

Maximum wire size termination and torque rating:

- 0.0507 to $3.30 \mathrm{~mm}^{2}$ (30 to 12 AWG) single-
wire termination or two $1.31 \mathrm{~mm}^{2}$ (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

Note:
Adjacent terminals may be labeled differently, depending on the model number.
Note:
To prevent damage to the controller, do not connect wires to unused terminals. Note:
Maintain electrical isolation between analog input
1 and switched dc/open collector outputs.

Power	
Slot C	
	- 47 to 63 Hz
	- 10VA maximum power consumption
	- Lova maximum power consumption
	Low Power
	- 12 to $40 \mathrm{~V}=$ (dc)
	- 20 to 28V~ (ac) Semi Sig F47
	High Power
	- 85 to $264 \mathrm{~V} \sim$ (ac)
	-100 to 240V~ (ac) Semi Sig F47
Power	

Note:
In the drawings below for each input notice that the Slot A connector labeling is identified.

Note:

When using a 2 wire RTD, jumper S1 and T1 together
Inputs
All inputs shown below represent input 1 (the only input) and are to be connected to slot A of the PID Control.

Process Volts and Amperes

- 4 to $20 \mathrm{~mA} @ 100 \Omega$ input impedance
- 0 to $10 \mathrm{~V}=$ (dc) @ $20 \mathrm{k} \Omega$ input impedance
- Scalable

Resistance Temperature Detector (RTD)

- Platinum, $100 \Omega @ 0^{\circ} \mathrm{C}$
- Calibration to DIN curve $\left(0.00385 \Omega / \Omega /{ }^{\circ} \mathrm{C}\right)$
- 20Ω total lead resistance
- RTD excitation current of 0.09 mA typical. Each ohm of lead resistance may affect the reading by $0.03^{\circ} \mathrm{C}$.
- For 3-wire RTDs, the S 1 lead must be connected to R1.
- For best accuracy use a 3-wire RTD to compensate for lead-length resistance. All three
lead wires must have the same resistance.

Thermocouple

- $2 \mathrm{~K} \Omega$ maximum source resistance
- $\quad>20 \mathrm{M} \Omega$ input impedance
- 3 microampere open-sensor detection
- Thermocouples are polarity sensitive. The negative lead must be connected to S 1 .
- To reduce errors, the extension wire for thermocouples must be of the same alloy as the thermocouple.

Power Supply Note:

Switched dc and Process outputs use a common power supply with a maximum current output of 40 mA .
As an example, supplied current (mA) from output 1 and 2 can be 20/20, 30/10, 40/0, 10/30, etc...
Outputs
Please note all outputs are connected exclusively to slot A. Output availability is based on the part number of your PID Control.

Mechanical Relay

PM_(C)_J-AAAB

Switched DC

- Supplied current up to a maximum of 40 mA . See Power Supply note above.
- Short circuit limited to $<50 \mathrm{~mA}$
- 22 to $32 \mathrm{~V}=$ (dc) open circuit voltage
- Use dc- and dc+ to drive external solid-state relay.
- DIN-A-MITE compatible
- single-pole: up to 4 in parallel or 4 in series - 2-pole: up to 2 in parallel or 2 in series - 3-pole: up to 2 in series

Open Collector

- 100 mA maximum output current sink
- $30 \mathrm{~V}=$ (dc) maximum supply voltage
- Any switched dc output can use the common terminal.
- Use an external power supply to control a dc load, with the load positive to the positive of the power supply, the load negative to the open collector and common to the power supply negative.

See Quencharc note

Mechanical Relay Form C

- 5 A at $240 \mathrm{~V} \sim(\mathrm{ac})$ or $30 \mathrm{~V}=(\mathrm{dc})$ maximum resistive load
- 20 mA at 24 V minimum load
- 125 VA pilot duty at $120 / 240 \mathrm{~V} \sim(\mathrm{ac}), 25$ VA at $24 \mathrm{~V} \sim(\mathrm{ac})$
- 100,000 cycles at rated load
- Output does not supply power.
- For use with ac or dc

See Quencharc note.

Mechanical Relay Form A

- 5 A at $240 \mathrm{~V} \sim(\mathrm{ac})$ or $30 \mathrm{~V}=$ (dc) maximum resistive load
- 20 mV at 24 V minimum load
- 125 VA pilot duty @ 120/240V~ (ac), 25 VA at $24 \mathrm{~V} \sim(\mathrm{ac})$
- 100,000 cycles at rated load
- Output does not supply power.
- For use with ac or dc

See Quencharc note.

NO-ARC Relay Form A

- 15 A at 85 to $264 \mathrm{~V} \sim$ (ac) resistive load only
- $1 / 16$ DIN models only
- $2,000,000$ cycle rating for NO-ARC circuit
- 100 mA minimum load
- 2 mA maximum off state leakage
- Do not use on dc loads.
- Output does not supply power.

Solid-State Relay Form A

- 0.5 A at 20 to $264 \mathrm{~V} \sim$ (ac) maximum resistive load
- 20 VA $120 / 240 \mathrm{~V} \sim(a c)$ pilot duty
- Opto-isolated, without contact suppression
- Maximum off state leakage of 105 microamperes
- Output does not supply power
- Do not use on dc loads.
- See Quencharc note.

Universal Process

- 4 to 20 mA into 800Ω maximum load
- 0 to $10 \mathrm{~V}=$ (dc) into voltage $1 \mathrm{k} \Omega$ minimum load
- Scalable
- Output supplies power (See Power Supply note above).
- Cannot use voltage and current outputs at same time

32nd DIN PID Controller

With a few exceptions, all of the key functions described for the $16^{\text {th }}$ DIN PID Controller apply to the $32^{\text {nd }}$ DIN PID Controller as well.

Left Display:
In the Operations Menu, displays the process value, otherwise displays the value of the parameter in the left display.

Right Display:
Indicates the set point or output power value during operation, or the parameter whose value appears in the right display.

Responding to a Displayed Message (16 ${ }^{\text {th }}$ or $\mathbf{3 2 n d}^{\text {nd }}$ DIN)

An active message will cause the display to toggle between the normal settings and the active message in the upper or left display and [Attn] in the lower or right display. Your response will depend on the message and the controller settings. Some messages, such as Tuning, indicate that a process is underway. If a message is generated in the right or lower display that can be cleared (such as $\boldsymbol{R L L h i}$), simply push the infinity $(\mathbb{1}$ key to execute the action ($\left[\begin{array}{c}L r \\)\end{array}\right.$.
RL.L Alarm Low 1 (sensor input below low alarm set point)

AL,h 1 Alarm High 1 (sensor input above high alarm set point)
AL.E I Alarm Error 1 (alarm state cannot be determined due to lack of sensor input)
Er. 11 Error Input 1 (sensor is not providing a valid signal to the control)
tUin Tuning (controller is autotuning the control loop)
rP Ramping (controller is ramping to a new set point)

Upon power up of the control，using the advance key will scroll through the various prompts found in the Operations Menu．At any point within the Operations menu to return to the default display push the Infinity \odot key．

Operations Menu

Operations Menu $16^{\text {th }} \& 32^{\text {nd }}$ DIN PID Controller		
Display	Parameter Name Description	Range（Defaults are shown bold）
$\begin{aligned} & \text { RUUE } \\ & \text { [} \mathrm{AUt}] \end{aligned}$	Autotune Start an autotune．While active the upper or left and lower or right display will Appears if：Heat or cool algorithm set to PID	$\begin{array}{r} \text { no } \\ \text { No } \\ \text { YES Yes } \end{array}$
$\frac{[. \Gamma 7}{[\mathrm{C} . \mathrm{M}]}$	Control Mode Active View the current control mode． Appears if：Always	ofF Off RULO Auto MクR Manual
$\begin{aligned} & \mathrm{h}, \mathrm{~Pb} \\ & {[\mathrm{~h} \cdot \mathrm{~Pb}]} \end{aligned}$	Heat Proportional Band Set the PID proportional band for the heat outputs． Appears if：Heat algorithm set to PID	0 to $9,999.000^{\circ} \mathrm{F}$ or units 0 to $5,555.000^{\circ} \mathrm{C}$ Units， $25.0^{\circ} \mathrm{F}$ or $14.0^{\circ} \mathrm{C}$
$\begin{aligned} & \text { C.Pb } \\ & {[\mathrm{C} . \mathrm{Pb}]} \end{aligned}$	Cool Proportional Band Set the PID proportional band for the cool outputs． Appears if：Cool algorithm set to PID	0 to $9,999.000^{\circ}$ F or units 0 to $5,555.000^{\circ} \mathrm{C}$ Units， $25.0^{\circ} \mathrm{F}$ or $14.0^{\circ} \mathrm{C}$
t	Time Integral Set the PID integral for the outputs． Appears if：Heat or cool algorithm set to PID	0 to 9，999 seconds per repeat 180.0
$\frac{t d}{[\mathrm{td}]}$	Time Derivative Set the PID derivative time for the outputs． Appears if：Heat or cool algorithm set to PID	0 to 9，999 seconds 0.0 seconds
$\begin{aligned} & \begin{array}{l} \mathrm{a}, \mathrm{~Eb} \\ {[0 . \mathrm{tb} 1]} \end{array} \\ & \hline \end{aligned}$	Time Base Output 1 Set the time base for fixed－time－base control． Appears if：Output 1 set to heat or cool with control algorithm set to PID．	0.1 to 60.0 seconds（solid－state relay or switched dc） 5.0 to 60.0 seconds（mechanical relay \＆NO－ARC power control） $1 \mathbf{s e c}$ ．［SSR \＆sw dc］， 20.0 sec．［mech．relay \＆NO－ARC］
$\begin{aligned} & a, t b c \\ & {[0 . \mathrm{tb} 2]} \end{aligned}$	Time Base Output 2 Set the time base for fixed－time－base control． Appears if：Output 2 set to heat or cool with control algorithm set to PID．	0.1 to 60.0 seconds（solid－state relay or switched dc） 5.0 to 60.0 seconds（mechanical relay \＆NO－ARC power control） $1 \mathbf{s e c}$ ．［SSR \＆sw dc］， 20.0 sec．［mech．relay \＆NO－ARC］
$\begin{aligned} & \text { R.LO } \\ & {[\text { A.Lo] }} \end{aligned}$	Alarm Low Set Point Process－set the process value that will trigger a low alarm． Deviation－set the span of units from the closed loop set point that will trigger a low alarm． Appears if：If Alarm Type（A．ty）is set to Process or Deviation Alarm	$\begin{aligned} & -1,999.000 \text { to } 9,999.000^{\circ} \mathrm{F} \text { or units } \\ & -1,128.000 \text { to } 5,537.000^{\circ} \mathrm{C} \\ & \text { Units, } 32 . \mathbf{0}^{\circ} \mathrm{F} \text { or } \mathbf{0 . 0 ^ { \circ } \mathrm { C }} \end{aligned}$
$\begin{aligned} & \text { R,h }, ~ \\ & \text { [A.hi] } \end{aligned}$	Alarm High Set Point Process－set the process value that will trigger a high alarm． Deviation－set the span of units from the closed loop set point that will trigger a high alarm． Appears if：If Alarm Type（A．ty）is set to Process or Deviation Alarm	$\begin{aligned} & -1,999.000 \text { to } 9,999.000^{\circ} \mathrm{F} \text { or units } \\ & -1,128.000 \text { to } 5,537.000^{\circ} \mathrm{C} \\ & \text { Units, } \mathbf{3 0 0 . 0} \mathbf{0}^{\circ} \mathrm{F} \text { or } \mathbf{1 5 0 . 0 ^ { \circ } \mathrm { C }} \end{aligned}$
$\begin{aligned} & 1,[8] \\ & {[\mathrm{i} . \mathrm{CA}]} \end{aligned}$	Calibration Offset Set an offset value for a process output． Appears if：Always	$-1,999.000$ to $9,999.000^{\circ} \mathrm{F}$ or units $-1,110.555$ to $5,555.000^{\circ} \mathrm{C}$ 0.0

1314
1516

To enter the Setup Menu push and hold the up and down arrow keys for ap－ proximately 3 seconds．Once there，push the green advance key to scroll through to the prompt of choice and then use the up and down arrow keys to change the range．At any point within the Setup menu to return to the default display push the Infinity \oplus key．

Setup Menu

LoL Lockout Menu
SEn Sensor Type
L in Linearization
dEE Decimal
C＿F Display Units
r．Lo Range Low
r．h．Range High
$F \cap 1$ Function One
o．ty Output Type
F \boldsymbol{F}（）Function Two
$h, 89$ Heat Algorithm
h．SC Heat Hysteresis
C．89 Cool Algorithm
R，t \boldsymbol{Y} Alarm Type
R．h C Alarm Hysteresis
R．L 9 Alarm Logic
R，L A Alarm Latching
R．BL Alarm Blocking
R．5，Alarm Silencing
R．dSP Alarm Display
$r \boldsymbol{r}$ Ramp Action
r．rt Ramp Rate
5．Lol Scale Low
（5．h ，I）Scale High
o．h ， 1 Power Scale High Output
o．h ，ट］Power Scale High Output 2
PRIIUpper or Left Display

Setup Menu $16^{\text {th }} \& 32^{\text {nd }}$ DIN PID Controller		
Display	Parameter Name Description	Range（Defaults are shown bold）
$\begin{aligned} & \hline \mathrm{LOC} \\ & {[\mathrm{LOC}]} \end{aligned}$	Lockout Menu Set the security clearance level．The user can access the selected level and all lower levels． Appears if：Always	1 to 5 1 Operations Menu（read only，A／M button disabled）＊ 2 Operations Menu（A／M button disabled，Set point R／W）＊ 3 Operations Menu（A／M button enabled，Set point R／W，Control Mode R／W）＊ 4 Operations Menu R／W access＊ 5 Operations Menu and Setup Menu full R／W access ＊You can change the security level at any level
$\begin{aligned} & \text { SEn } \\ & {[\text { SEn] }} \end{aligned}$	Sensor Type Set the analog sensor type to match the device wired to this input． Appears if：Always	```\(t[\) Thermocouple wolt Volts dc CクB Milliamps dc CO．IH RTD \(100 \Omega\)```
$\begin{aligned} & \hline L \text { in } \\ & {[\text { Lin }} \end{aligned}$	Linearization Set the linearization to match the thermocouple type wired to this input． For example，select $\square \boldsymbol{H}$ for a type K thermocouple． Appears if：Sensor Type is set to Thermocouple．	
$\begin{gathered} \hline d E[\\ {[\mathrm{dEC}]} \end{gathered}$	Decimal Set the precision of the displayed value． Appears if：Always	0 Whole 0.0 Tenths 0.00 Hundredths
$\begin{aligned} & C_{-}-F \\ & {\left[C_{-}\right]} \\ & \hline \end{aligned}$	Display Units Select which units will be displayed． Appears if：Always	$\quad \mathrm{F}{ }^{\circ} \mathrm{F}$ $\quad \mathrm{C}^{\circ} \mathrm{C}$
$\begin{array}{\|l\|l\|} \hline r . L o \\ \hline r . L o l \end{array}$	Range Low Set the low range of the set point． Appears if：Always	$\begin{aligned} & -1,999.000 \text { to } 9,999.000 \\ & \mathbf{0 . 0} \end{aligned}$
$\begin{aligned} & \text { r.h }, \\ & {[\text { r. .hi] }} \end{aligned}$	Range High Set the high range of the set point． Appears if：Always	$-1,999.000$ to 9，999．000
$\frac{F_{n}}{[f n 1]}$	Function of Output 1 Select which function will drive this output． Appears if：If output 1 is ordered	ofF Off Cool Cool hERE Heat BLCT Alarm
$\begin{aligned} & 0 . t y \\ & {[0 . t y]} \end{aligned}$	Output Type Select whether the process output will operate in volts or milliamps． Appears if：A process output（PM＿C＿F＿－＿$A A A B \quad$＿$)$	wolt Volts F7R Milliamps

PRir C）Lower or Right Display
Rd． 5 Zone Address

To enter the Setup Menu push and hold the up and down arrow keys for approximately 3 seconds. Once there, push the green advance key to scroll through to the prompt of choice and then use the up and down arrow keys to change the range. At any point within the Setup menu to return to the default display push the Infinity © key.

Setup Menu

LoC Lockout Menu

SEn Sensor Type
L in Linearization
dEC Decimal
[_F Display Units
r.Lo Range Low
r.h. Range High

Fn Ifunction One
o.ty Output Type

FnC] Function Two
h, 89 Heat Algorithm
h.SC Heat Hysteresis
C.A9 Cool Algorithm
R.t. \boldsymbol{y} Alarm Type
A.hy Alarm Hysteresis

R, L S A Alarm Logic
A.L. 8 Alarm Latching
R.BL Alarm Blocking
R.5, Alarm Silencing

R,dSP Alarm Display
re Ramp Action
r,rt Ramp Rate
5.Lo I Scale Low
5.h, 1 Scale High
o.h , I Power Scale High Output 1 o.h , ट) Power Scale High Output 2

PRrIUpper or Left Display
PRI C Lower or Right Display
Rd.S Zone Address

To enter the Setup Menu push and hold the up and down arrow keys for approximately 3 seconds. Once there, push the green advance key to scroll through to the prompt of choice and then use the up and down arrow keys to change the range. At any point within the Setup menu to return to the default display push the Infinity \oplus key

Setup Menu

Lol Lockout Menu
SEn Sensor Type
L in Linearization
dEL Decimal
C_F Display Units
r.Lo Range Low
r, h, Range High
$F \cap$ I Function One
o.t. Output Type

F $\boldsymbol{\sim}$ 己) Function Two
h, 89 Heat Algorithm
h.5C Heat Hysteresis
[.89 Cool Algorithm
R.t \boldsymbol{Y} Alarm Type
R.hy Alarm Hysteresis

R, LS A Alarm Logic
R.L. A Alarm Latching
A.bL Alarm Blocking
R.5. Alarm Silencing
R.dSP Alarm Display
rP Ramp Action
r.rt Ramp Rate
5.Lol Scale Low
(5.h , I) Scale High
o.h , il Power Scale High Output 1
$0 . h, 2$ Power Scale High Output 2
PRrIUpper or Left Display
PRir L Lower or Right Display
Rd.S Zone Address

Setup Menu $16^{\text {th }} \& 32^{\text {nd }}$ DIN PID Controller		
Display	Parameter Name Description	Range (Defaults are shown bold)
$\begin{aligned} & \text { Fnc } \\ & {[\text { fn2] }} \\ & \hline \end{aligned}$	Function of Output 2 Select which function will drive this output. Appears if: If output 2 is ordered	ofF Off [COOL Cool hERE Heat RLPT Alarm
$\begin{gathered} h . R 9 \\ {[\mathrm{~h} . \mathrm{Ag}]} \end{gathered}$	Heat Algorithm Set the heat control method. Appears if: Output 1 or 2 set to heat	ofF Off P, d PID on,of On-Off
$\begin{aligned} & h S C \\ & {[\mathrm{hSC}]} \\ & \hline \end{aligned}$	Hysteresis (Heat \& Cool) Set the control switching hysteresis for on-off control. This determines how far into the "on" region the process value needs to move before the output turns on. Appears if: Heat or Cool Algorithm is set to On-Off.	0 to $9,999.000^{\circ} \mathrm{F}$ or units 0 to $5,555.000^{\circ} \mathrm{C}$ Units, $3.0^{\circ} \mathrm{F}$ or $2.0^{\circ} \mathrm{C}$
$\begin{aligned} & {[., .99} \\ & {[\mathrm{C} . \mathrm{Ag}]} \end{aligned}$	Cool Algorithm Set the cool control method. Appears if: If Output 1 or 2 is set to cool	off $0 f 1$ P, PID on,of On-Off
$\begin{aligned} & \text { R.ty } \\ & {[\text { A.ty] }} \end{aligned}$	Alarm Type Select how the alarm will or will not track the set point. Appears if: Always	ofF Off Pr.RL Process Alarm dE.RL Deviation Alarm
$\begin{aligned} & \text { R.hy } \\ & {[\text { A.hy] }} \end{aligned}$	Alarm Hysteresis Set the hysteresis for an alarm. This determines how far into the safe region the process value needs to move before the alarm can be cleared. Appears if: When alarm type is set to process or deviation alarm	0.001 to $9,999.000^{\circ}$ F or units 0.001 to $5,555.000^{\circ} \mathrm{C}$ Units, $1.0^{\circ} \mathrm{F}$ or $1.0^{\circ} \mathrm{C}$
$\begin{aligned} & \frac{R . L \text { P }}{} \\ & {[A . L g]} \end{aligned}$	Alarm Logic Select what the output condition will be during the alarm state. Appears if: Always	R.LC Close on Alarm R. L_{o} Open on alarm
$\begin{gathered} \text { R.LA } \\ {[\text { A.LA }]} \end{gathered}$	Alarm Latching Turn alarm latching on or off. A latched alarm has to be turned off by the user. Appears if: When alarm type is set to process or deviation alarm	[nLRE] Non-Latching LRE Latching
$\begin{aligned} & \text { R.bL } \\ & {[\text { A.bL] }} \\ & \hline \end{aligned}$	Alarm Blocking Select when an alarm will be blocked. After startup and/or after the set point changes, the alarm will be blocked until the process value enters the normal range. Appears if: When alarm type is set to process or deviation alarm	ofF 0 ff Str Startup StPE Set Point both Both
$\begin{aligned} & \text { R.S. } \\ & {[\text { A.Si] }} \end{aligned}$	Alarm Silencing Turn alarm silencing on to allow the user to disable the output tied (configured) to this alarm Appears if: When alarm type is set to process or deviation alarm	$\begin{aligned} & \text { off 0ff } \\ & \text { on On } \end{aligned}$

1920

Setup Menu $16^{\text {th }} \& 32^{\text {nd }}$ DIN PID Controller		
Display	Parameter Name Description	Range (Defaults are shown bold)
$\begin{aligned} & \text { R,dSP } \\ & {[\text { A.dSP] }} \end{aligned}$	Alarm Display Display an alarm message when an alarm is active. Appears if: When alarm type is set to process or deviation alarm	$\begin{aligned} & \text { off } \mathrm{Off} \\ & \text { on } 0 \mathrm{n} \end{aligned}$
$\frac{r P}{[r P]}$	Ramp Action Select when the controller's set point will ramp to the defined end set point. Appears if: Always	```oFF Off Str Startup SEPE Set Point Change both Both```
$r \text { r.rt }$	Ramp Rate Set the rate for the set point ramp. Set the time units for the rate with the Ramp Scale parameter. Appears if: Ramp Action is set to Startup, Set Point or Both.	$1.0^{\circ} \mathrm{F}$ degrees or units per hour $1.0^{\circ} \mathrm{C}$
S.Lo 1 [S.Lo1]	Scale Low Output 1 Set minimum value of output 1 range. Appears if: Output 1 is a Process set to heat or cool	$\begin{aligned} & -100.0 \text { to } 100.0 \\ & \mathbf{0 . 0} \end{aligned}$
5.h , 1 [S.hi1]	Scale High Output 1 Set maximum value of output 1 range. Appears if: Output 1 is a Process set to heat or cool	$\begin{aligned} & -100.0 \text { to } 100.0 \\ & 10.0 \end{aligned}$
o.h , I [o.hi1]	Power Scale High Output 1 Set maximum value of output 1 range. Appears if: Output 1 is Switched and set to heat or cool	$\begin{aligned} & 0.0 \text { to } 100 \% \\ & 100.0 \end{aligned}$
$0 . h, 2$ [o.hi2]	Power Scale High Output 2 Set maximum value of output 2 range. Appears if: Output 2 is Switched and set to heat or cool	$\begin{aligned} & 0.0 \text { to } 100 \% \\ & 100.0 \end{aligned}$
PRA 1 [PAr1]	Upper or Left Display Select parameter to display. Appears if: Always	RL.Pu Active Process Value none none
$\begin{aligned} & \text { PRir 2] } \\ & \text { [PAr2] } \end{aligned}$	Lower or Right Display Select parameter to display. Appears if: Always	RC.SP Active Set Point R,h Alarm High Set Point R,L o Alarm Low Set Point none None
$\begin{array}{\|r} \text { Pd.S } \\ \text { [Ad.S] } \end{array}$	Zone Address - Standard Bus Communication Set zone address from 1-16. Appears if: Always	$\begin{aligned} & 1-16 \\ & 1 \end{aligned}$

Specifications

Line Voltage／Powe
－All voltage levels represent minimums and maximums
－ 85 to $264 \mathrm{~V} \sim(\mathrm{ac}), 47$ to 63 Hz
－ 20 to $28 \mathrm{~V} \sim(\mathrm{ac}),+10 /-15$ percent； $50 / 60 \mathrm{~Hz}, \pm 5$
percent
－ 12 to $40 \mathrm{~V}=(\mathrm{dc})$
－10VA maximum power consumption
－Data retention upon power failure via nonvola－ tile memory
－Compliant with SEMI F47－0200，Figure R1－1 voltage sag requirements＠24V～（ac）or higher

Environment

－-18 to $65^{\circ} \mathrm{C}\left(0\right.$ to $\left.149^{\circ} \mathrm{F}\right)$ operating temperature
－-40 to $85^{\circ} \mathrm{C}\left(-40\right.$ to $185^{\circ} \mathrm{F}$ ）storage temperature
－ 0 to 90 percent RH，non－condensing
Accuracy
－Calibration accuracy and sensor conformity： ± 0.1 percent
of span，$\pm 1^{\circ} \mathrm{C}$＠the calibrated ambient
temperature and rated line voltage
－Type S， 0.2 percent
－Type T，below $-50^{\circ} \mathrm{C}$ ； 0.2 percent
－Calibration ambient temperature＠ $25^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ $\left(77^{\circ} \mathrm{F} \pm 5^{\circ} \mathrm{F}\right.$ ）
－Accuracy span： $540^{\circ} \mathrm{C}\left(1000^{\circ} \mathrm{F}\right)$ minimum
－Temperature stability：$\pm 0.1^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}\left(\pm 0.1^{\circ} \mathrm{F} /{ }^{\circ} \mathrm{F}\right)$ rise in ambient maximum
Agency Approvals
－UL®／EN 61010 Listed
－ANSI／ISA 12．12．01－2007 Class 1 Division 2
Groups A，B，C，D，Temperature Code T4A．
－UL® 50，NEMA 4X，EN 60529 IP66（indoor use only）
－CSA C22．2 No． 24 File 158031
－RoHS，W．E．E．E．
－SEMI F47－0200
Controller
－User selectable heat／cool，on－off，P，PI，PD，PID or alarm action
－Auto－tune control algorithm
－Control sampling rates：input $=10 \mathrm{~Hz}$ ，outputs $=$ 10 Hz
－Input and output capacity per controller type ordering information
Serial Communications
－Isolated communications
－Standard Bus Configuration Protocol
Wiring Termination－Touch－Safe Terminals
－Input，power and controller output terminals are touch safe removable 12 to 22 AWG
－Use $75^{\circ} \mathrm{C}$ ，Cu conductor only
Universal Input
－Thermocouple，grounded or ungrounded sen－ sors
－＞20M 2 input impedance
－Maximum of $2 \mathrm{~K} \Omega$ source resistance
－RTD 2－or 3－wire，platinum， 100Ω＠ $0^{\circ} \mathrm{C}$
calibration to DIN curve（ $0.00385 \Omega / \Omega /{ }^{\circ} \mathrm{C}$ ）
－Process， $4-20 \mathrm{~mA} @ 100 \Omega$ ，or $0-10 \mathrm{~V}=(\mathrm{dc})$＠ 20k』 input impedance；scalable

Functional Operating Range

－Type B：-50 to $1816^{\circ} \mathrm{C}\left(-58\right.$ to $\left.3301^{\circ} \mathrm{F}\right)$
－Type C： 0 to $2315^{\circ} \mathrm{C}\left(32\right.$ to $4199^{\circ} \mathrm{F}$ ）
－Type D： 0 to $2315^{\circ} \mathrm{C}\left(-328\right.$ to $\left.4199^{\circ} \mathrm{F}\right)$
－Type E：-270 to $1000^{\circ} \mathrm{C}\left(-454\right.$ to $\left.1832^{\circ} \mathrm{F}\right)$
－Type E：-270 to $1000^{\circ} \mathrm{C}\left(-454\right.$ to $183{ }^{\circ}$
－Type F： 0 to $1343^{\circ} \mathrm{C}\left(32\right.$ to $\left.2449^{\circ} \mathrm{F}\right){ }^{\circ} \mathrm{F}{ }^{\circ}$
－Type J：-210 to $1200^{\circ} \mathrm{C}\left(-346\right.$ to $\left.2192^{\circ} \mathrm{F}\right)$
－Type K：-270 to $1371^{\circ} \mathrm{C}\left(-454\right.$ to $\left.2500^{\circ} \mathrm{F}\right)$
－Type R：-50 to $1767^{\circ} \mathrm{C}\left(-58\right.$ to $\left.3213^{\circ} \mathrm{F}\right)$
－Type S：-50 to $1767^{\circ} \mathrm{C}\left(-58\right.$ to $3213^{\circ} \mathrm{F}$ ）
－Type T：-270 to $400^{\circ} \mathrm{C}\left(-454\right.$ to $752^{\circ} \mathrm{F}$ ）
－RTD（DIN）：－ 200 to $800^{\circ} \mathrm{C}\left(-328\right.$ to $\left.1472^{\circ} \mathrm{F}\right)$
－Process：－1999 to 9999 units

Output Hardware

－Switched dc， 22 to $32 \mathrm{~V}=$（dc）with a maximum of 40 mA supply current available．
－Open collector，maximum sink current 100 mA ， ＠ $30 \mathrm{~V}=(\mathrm{dc})$
－Solid state relay（SSR），Form A， $0.5 \mathrm{~A} @$ $24 \mathrm{~V} \sim(\mathrm{ac})$ minimum， $264 \mathrm{~V} \sim(\mathrm{ac})$ maximum， opto－isolated，without contact suppression
－Electromechanical relay，Form C，5A， 24 to $240 \mathrm{~V} \sim(\mathrm{ac})$ or $30 \mathrm{~V}=$（dc）maximum，resistive load，100，000 cycles at rated load
－Electromechanical relay，Form A，5A， 24 to $240 \mathrm{~V} \sim(\mathrm{ac})$ or $30 \mathrm{~V}=$（dc）maximum，resistive load，100，000 cycles at rated load
－NO－ARC relay，Form A，15A， 24 to $240 \mathrm{~V} \sim(\mathrm{ac})$ ， no $\mathrm{V}=(\mathrm{dc})$ ，resistive load， 2 million cycles at rated load
－Universal process：
－ 0 to $10 \mathrm{~V}=$（dc）into a minimum $1,000 \Omega$ load － 4 to 20 mA into maximum 800Ω load

Operator Interface

－Dual 4 digit， 7 segment LED displays
－Typical display update rate 1 Hz
－Advance，infinity，up and down keys plus an EZ－KEY key（not available in 1／32 DIN）
－EZ－KEY automatically programmed as an Auto／ Manual transfer mode function．

Ordering Part Number
（Part number digits 1 through 14）PMXCXXX－AAAABXX
All Models include：＊Universal Sensor Input，Standard Bus Configuration Communications
＊Dual line Red over Green 7 Segment displays
Package Size（Digit \＃3）
$3=1 / 32$ DIN
$6=1 / 16$ DIN
$8=1 / 8$ DIN vertical（future option）
$9=1 / 8$ DIN horizontal（future option）
$4=1 / 4$ DIN（future option）

Primary Function（Digit \＃4）

C＝PID Controller w／Universal Input

Power Supply（Digit \＃5）

$1=100-240$ VAC
$3=12-28 \mathrm{VAC} / D C$
Output 1 and 2 Hardware Options（Digits \＃6 and \＃7）

Output 1
CA $=$ Switched dc／open collector
$\mathrm{CH}=$ Switched dc／open collector
$C C=$ Switched dc／open collector $C J=$ Switched dc／open collector CK＝Switched dc／open collector $E A=$ Mechanical Relay 5 Amp form C EH＝Mechanical Relay 5 Amp form C C＝Mechanical Relay 5 Amp form C $\mathrm{EJ}=$ Mechanical Relay 5 Amp form C EK＝Mechanical Relay 5 Amp form C
A＝Universal Process
C＝Universal Process
FJ $=$ Universal Process
FK＝Universal Process
AK $=$ Universal Process
AK $=$ None
AK $=$ None
KK $=$ SSR Form A，0．5 Amp
KK＝SSR Form A，0．5 Amp
Future Options（Digits \＃8 thru \＃11
AAAA $=$ None
Menu Type（Digits \＃12）
$B=$ PM Express with English manual（Limit or PID）
Additional Options（Digits \＃13 and \＃14）
AA＝Standard EZ－ZONE face plate
$12=$ Class 1，Div 2 （not available with Limit Controller or mechanical relay outputs）
Multilingual User Manuals（PID only）and associated Watlow part numbers：

－English	$0600-0065-0000$
－Chinese	$0600-0065-0001$
－Japanese	$0600-0065-0002$
－Korean	$0600-0065-0003$
－German	$0600-0065-0004$
－French	$0600-0065-0005$
－Italian	$0600-0065-0006$
－Spanish	$0600-0065-0007$

Declaration of Conformity
Series EZ－ZONE ${ }^{\circledR}$ PM

WATLOW

1241 Bundy Blvd．
Winona，MN 55987 USA
Declares that the following product：
Designation：

Series EZ－ZONE ${ }^{\circledR}$ PM（Panel Mount）

Model Numbers：\quad PM（3，6，8， 9 or 4）（Any Letter or number）－（1，2，3 or 4）（A，C，E，F or K）（A，C，H，J or K）（Any letter or number）－（Any letter or number）（A，C E, F or K$)(\mathrm{A}, \mathrm{C}, \mathrm{H}, \mathrm{J}$ or K ）（Any three letters or numbers）
Classification：
Rated Voltage
Rated Voltage and Frequency
Temperature control，Installation Category II，Pollution degree 2，IP66
Rated Power Consumption： 10 VA maximum PM3，PM6 Models．
14 VA maximum PM8，PM9，PM4 Models
Meets the essential requirements of the following European Union Directives by using the relevant standards show below to indicate compliance．

requirements depending on load switched and source impedance．
EN 61010－1 2001 2006／95／EC Low－Voltage Directive $\begin{aligned} & \text { Safety Requirements of electrical equipment for measurement，}\end{aligned}$
control and laboratory use．Part 1：General requirements Compliant with 2002／95／EC RoHS Directive

Raymond D．Feller III
Name of Authorized Representative
General Manager \qquad
Winona，Minnesota，USA
Place of Issue
June 2009
Date of Issue

Signature of Authorized Representative

C
1996.

How to Reach Us

Corporate Headquarters	Europe	
Watlow Electric Manufacturing Company	Watlow France	Watlow Ibérica，S．L．U．
12001 Lackland Road	Tour d＇Asnières．	C／Marte 12，Posterior，Local 9
St．Louis，MO 63146	4 Avenue Laurent Cély	E－28850 Torrejón de Ardoz
Sales：1－800－WATLOW2	92600 Asnières sur Seine	Madrid－Spain
Manufacturing Support：1－800－4WATLOW	France	T．+34916751292
Email：info＠watiow．com	Tê：＋ 33 （0）1 41327970	F．+34916487380
Website：www．watlow．com	Télécopie：＋ $33(0) 147333657$	Email：info＠watlow．es
From outside the USA and Canada：	Email：info＠watlow．fr	Website：www．watlow．es
Tel：＋1（314）878－4600	Website：www．watlow．fr	
Fax：＋1（314）878－6814	Watlow GmbH	Watlow UK Ltd． Linby Industrial Estate
	Postfach 11 65，Lauchwasenstr． 1	Linby，Nottingham，NG15 8AA
Latin America	D－76709 Kronau	United Kingdom
Watlow de México S．A．de C．V．	Germany	Telephone：（0） 1159640777
Av．Fundición No． 5	Tel：＋49（0）7253 9400－0	Fax：（0） 1159640071
Col．Parques Industriales	Fax：＋49（0） 7253 9400－900	Email：info＠watlow．co．uk
Querétaro，Qro．CP－76130	Email：infowatlow．de	Website：www．wattow．co．uk
Mexico Tel：＋52 442 217－6235	Website：www．watlow．de	From outside The United Kingdom： Tel：+441159640777
Fax：＋52 442 217－6403	Watlow Italy S．r．I．	Fax：＋44 1159640071
	Viale Italia $52 / 54$	
	20094 Corsico MI	
	Italy	
	Tel：＋39 024588841 Fax：＋39 0245869954	
	Email： ： alyinfo＠watlow．com	
	Website：www．watlow．it	

Asia and Pacific

Watlow Singapore Pte Ltd． 16 Ayer Rajah Crescent．

\＃06－03／04，
${ }_{\text {Singapore }} \mathbf{\# 0 6} 13996$
Tel：＋65 677994858 Fax：+6567780323
Email：info＠watlow．com．sg
Watlow Australia Pty．Ltd．
4／57 Sharps Road
Tullamarine，VIC 3043
Australia
tel：+61393356449
Fax：+61393303566
Website：www．watlow．com
Watlow Electric Manufacturing（Shanghai）Company 1118 Fangyuan Road，Anting Industrial Park，Jiading，Shangha
People＇s Republic of China
tel：+862139509510
Fax：$+86215080-0906$
Eax： ＝mail：info＠watlow．cn
Website：www．watlow．cn
$\xrightarrow[\text { フトロー・ジャパン株式会社 }]{\text { テ10 }}$

Tel：03－3518－6630 Fax：03－3518－6632
Email：infoj＠watlow．com Website：www．watlow．co．jp
Watlow Japan Ltd．
1－14－4 UChikanda，Chiyoda－Ku
okyo 101－0047
Japan
Tel：＋81－3－3518－6630
Fax： ：81－3－3518－6632
Email：infoj＠watlow．com Website：www．watlow．co．jp

Watlow Korea Co．，Ltd．

Tel. +886-7-2885168 Fax: +886-7-2885568

Your Authorized Watlow Distributor

Industrial \＆Electric Supply Co．

 209 Paredes Line Rd．